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Using a data base generated by a numerical simulation, the three-dimensional coherent 
structures of a transitional, spatially evolving boundary layer are determined and 
their spatio-temporal behaviour is investigated in detail. The coherent structures 
are calculated by the proper orthogonal decomposition method (POD), which leads 
to an expansion of the flow field variables into Karhunen-Lobe eigenfunctions. It 
is shown that the dynamical coherent structures of the flat-plate boundary layer 
can be described by pairs of eigenfunctions that contain complete information on 
the spatial evolution of the structures. It is further demonstrated that first-order 
coherent structures determined by POD correspond to structures that are observed in 
experiments. In the region of the boundary layer where the spike signals of transition 
occur, higher-order coherent structures also play an essential role. By considering 
these higher-order structures as well as their dynamical behaviour in time, a compact 
description of the flow phenomena in the boundary layer can be obtained. The 
description of the events occurring at the spike stages of the transitional boundary 
layer shows, from a coherent structures point of view, striking similarities to the 
bursting event of fully turbulent boundary layers. 

1. Introduction 

The last few decades of turbulence research have seen a growing interest in the 
study of coherent structures of turbulent flows (Robinson 1991). As the philosophy 
behind the idea of coherent structures is, to a certain extent, the opposite of the 
philosophy of the statistical theory of turbulence, the coherent structures approach 
represents a different direction in the investigation of turbulence. 

Because instantaneous flow fields are assumed to be hopelessly complex, the classical 
statistical theory of turbulence (see, for example, Monin & Yaglom 1973) attempts 
to circumvent this complexity by considering only averaged quantities of the flow 
variables. While this approach yielded a lot of important results and is probably the 
one that has contributed the most to our current understanding of the phenomenon of 
turbulence, it is well known that, with the use of averages, the problem of complexity 
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simply changes its name to the ‘closure problem’. Furthermore, at least from an 
intuitive point of view, the idea of completely giving up on understanding the details 
of the motions of a turbulent fluid seems unsatisfactory. 

The coherent structures approach to turbulence, on the other hand, relies on a 
different picture of the turbulence phenomenon. The central idea is that turbulent 
flows - at least some of them - are not as complex as they appear to be at first 
sight. Rather, such flows are assumed to be composed of a set of organized motions, 
each possessing a comparatively simple spatial structure. The apparent complexity 
of such turbulent flows is then generated by the superposition in space and time of 
these organized, so-called ‘coherent structures’. 

The idea of simplicity behind complexity is also a centrepiece of another develop- 
ment that has gained importance within the last few decades, namely the study of 
nonlinear dynamical systems. It has been shown that very simple systems of ordinary 
differential equations (ODE’s) possessing as few as three degrees of freedom can give 
rise to extremely complex, ‘chaotic’ behaviour (Lorenz 1963). In connection with the 
success of dynamical systems theory, it seemed natural to look at turbulence as a 
chaotic phenomenon in the sense of the theory of ordinary differential equations. In 
trying to use dynamical systems theory - particularly for the case of open flow sys- 
tems like the flat-plate boundary layer considered in this paper - one is confronted 
with the question of what kind of modes of the flow are going to be described by the 
ODE‘s. 

This is exactly the issue where the concept of coherent structures becomes ad- 
ditionally relevant: if a turbulent flow could be considered as being composed of 
the superposition of a possibly small number of coherent structures, the equations 
describing the evolution of such structures are candidates for a low-dimensional 
description of turbulence. 

The considerations given above motivated the work (Rempfer 1991) upon which 
the present paper is based. Using data from a highly resolved numerical simulation 
(Rist, Kloker & Fasel 1994), the evolution and dynamical behaviour of the coherent 
structures in a flat-plate boundary layer were investigated in detail. In addition, 
by Galerkin projection of the Navier-Stokes equations onto a system of empirical 
eigenfunctions (similar to the work of Zhou & Sirovich 1992, see also Aubry et al. 
1988), a system of ordinary differential equations has been derived that describes the 
evolution of the coherent structures. Within the region where the boundary layer 
has started to get turbulent, this system of ODE’s indeed displayed low-dimensional 
deterministic chaos. In order to keep the present paper at a reasonable length, these 
parts of the investigation are reported elsewhere (Rempfer 1991, 1993). Here, we 
focus on our results concerning the evolution of coherent structures in the transitional 
regime. 

The domain considered (see $2) contains the stages of the transition process from 
the initial three-dimensional, nonlinear development of Tollmien-Schlichting waves 
up to just beyond the spike stages. The coherent structures within this region 
were determined using the method of proper orthogonal decomposition (POD). This 
method was first used in 1967 by Bakewell & Lumley (1967) for the calculation of 
near-wall coherent structures. With the advent and general availability of powerful 
computers, roughly since the beginning of the 1980s, this method has been applied to 
an increasing number of flows. For example, Glauser & George (19871, Kirby, Boris 
& Sirovich (1990) and Sirovich, Kirby & Winter (1990) used POD to identify coherent 
structures in axisymmetric jets, and Glezer, Kadioglu & Pearlstein (1989), Delville, 
Bellin & Bonnet (1990) and Rajaee & Karlsson (1990) investigated two-dimensional 
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structures of free shear layers, Proper orthogonal decomposition was employed by 
Moin & Moser (1989), Sirovich, Ball & Keefe (1990) and Ball, Sirovich & Keefe (1991) 
to calculate coherent structures in channel flows. The work by Moin & Moser was 
the first to identify three-dimensional coherent structures ; however, in contrast to our 
work they were forced to apply a so-called shot-noise decomposition (Lumley 1970) 
for the homogeneous directions of their flow. 

From experimental (see, for example, Hama & Nutant 1963; Williams, Fasel & 
Hama 1984; Perry, Lim & Teh 1981) and numerical (Kleiser & Zang 1991; Rist et al. 
1994) evidence, it is quite clear that coherent structures exist for transitional boundary 
layers. The motivation for applying POD to a transitional flat-plate boundary layer 
was twofold. First, it was by no means clear that POD would be able to extract 
the dynamical coherent structures of a spatially evolving flow like the one we were 
investigating. Sirovich (1989) raised serious doubts as to the suitability of POD for 
representing coherent structures with respect to the intuitive meaning of this term 
and stressed that ‘the relation between the eigenfunctions of the POD and coherent 
structures is unclear’ (p. 140; emphasis is ours). Furthermore, to our knowledge, the 
method of POD has never been used to extract fully three-dimensional eigenfunctions 
from spatial simulations (or experiments) of open flow systems (there exists, however, 
such an application of POD to Rayleigh-Bhard convection in a closed box, see 
Sirovich & Park 1990; Park & Sirovich 1990). In all cases where three-dimensional 
coherent structures of open flows have been identified using POD, the assumption of 
streamwise periodicity of the flow was made. In contrast, in the simulation of Rist et 
al. (1994), the flow shows a distinct evolution in the streamwise direction eventually 
leading to laminar-turbulent transition. Therefore, as a first objective we want to 
demonstrate that POD is indeed a suitable tool for determining spatially developing 
coherent structures. Because of its relative simplicity, the transitional boundary layer 
is an ideal test case for this purpose. 

Second, the notion of a ‘coherent structure’ is of little use as long as it is not possible 
to give a precise description of the role that these structures play in the dynamics 
of complex transient flows. In order to be able to give such a description, we need 
an exact mathematical definition of the flow fields corresponding to the coherent 
structures. While it is true that at least the most energetic structures we found by 
applying POD could have been found as well just by inspection, such a decomposition 
of the flow phenomena based on intuition is generally not accessible to a mathematical 
treatment. In comparison, proceeding from a mathematical description of the coherent 
structures as yielded by the POD, it is possible to directly derive an energy equation 
for the coherent structures from the Navier-Stokes equations. By investigating this 
energy equation, we then can explore the mechanisms behind the dynamical behaviour 
of the coherent structures and their contribution to the dynamics of the flow as a 
whole. This part of our work will be reported in a subsequent paper (Rempfer & 
Fasel 1994). 

The numerical simulation that produced the data base for the calculation of the 
empirical eigenfunctions is briefly described in $ 2. As the POD method is now widely 
known, only a short outline of the method, focusing on some of the properties of 
the formalism that are relevant to this investigation, is given in $3. A description of 
the evolution of the coherent structures in a transitional boundary layer based on the 
behaviour of the most energetic structures of the flow is given in $4, and 0 5 presents 
a closer look at the higher-order structures in a region of the boundary layer where 
the spike signals of transition occur. Some conclusions are drawn in 5 6 together with 
a discussion on future work. 
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0- 
FIGURE 1. Integration domain of numerical simulation by Rist et al. (1994). 

2. Numer ica l  simulation 
To calculate the three-dimensional structures of a flow, the POD requires a data 

base of spatially highly resolved flow fields at a number of time steps large enough 
so that the statistical averages in time are meaningful. At this time, such a data base 
can only be generated by numerical simulations. For our investigations, we were able 
to use the data from a numerical simulation by Rist et al. (1994), who simulated 
a wind tunnel experiment by Kachanov et al. (1985) on controlled transition in a 
flat-plate boundary layer. In their work, Rist et al. performed a direct Navier-Stokes 
simulation of the spatial development of an incompressible flow. The integration 
domain that was used and the corresponding coordinate system are shown in figure 1. 
As shown in this figure, the symbols x, y ,  and z were used for the streamwise, 
wall-normal and spanwise coordinates, respectively, and u, u, and w were used for 
the corresponding velocity components. For the simulation, a numerical method was 
developed employing finite difference approximations for the x- and y-coordinates 
while the spanwise coordinate was discretized in function space using Fourier modes. 
The discretization used for the integration domain shown in figure 1 consisted of 
4000 x 120 nodes for the streamwise and wall-normal directions, respectively, and 
included 16 Fourier harmonics for the spanwise direction. To simulate the experiment 
on controlled transition by Kachanov et al., Rist et al. introduced regular disturbances 
via their boundary condition for the wall-normal (u-) velocity component. As in the 
experiment, these disturbances were periodic in time and symmetric with respect to 
selected (x,y)-planes (the peak or valley planes). It is important to note that, as the 
Navier-Stokes equations preserve such symmetries, Rist et al. were able to assume, 
without loss of generality, symmetry of their flow fields with respect to the (x ,y ) -  
plane. This property is of special importance when using POD for the calculation of 
coherent structures (see the discussion in the following section). 

From the data generated by the simulation described above, we used the values of 
the velocity vector within a certain three-dimensional window of the computational 
domain. The region investigated corresponds to a rectangular box 8.77 mm high and 
24.5mm wide in the spanwise direction. In the streamwise direction the box extends 
from x = 300mm to x = 500mm, with x denoting the distance from the flat-plate 
leading edge. With a free-stream velocity of 9.09 m/s, the Reynolds number based 
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on momentum thickness was Red, = 283 at the inflow and Red, = 575 at the outflow 
boundary of the domain. Thus, the region considered here is composed of the stages 
of the transition process from the initial three-dimensional, nonlinear development of 
Tollmien-Schlichting waves up to just beyond the spike stages. Within the first 70% of 
the downstream extent of this region, the time behaviour of the flow is almost exactly 
periodic, but slight deviations from periodicity, indicating the onset of turbulence, 
can be observed within the last quarter of the domain. The ensemble of flow fields 
used in this work consisted of 440 equally spaced time steps within one time period 
of the prescribed disturbances. These flow fields were discretized on a 695 x 110-grid 
for the x- and y-directions and included 16 Fourier harmonics for the spanwise (z-) 
direction. 

3. The proper orthogonal decomposition 
Lumley (1967) was the first to suggest the use of the Karhunen-Loeve procedure 

of probability theory (Loeve 1955) to identify the coherent structures of random 
turbulent flows. This method, which is now widely known as proper orthogonal 
decomposition (POD), has the advantage that an ensemble of flow fields is the only 
information required to obtain the coherent structures of a flow. Thus, there is no 
need for external information, any prior knowledge, or even an understanding of the 
flow. This method is discussed briefly below, along with some of its properties that 
are of particular importance for our problem. 

We start by pointing out the special properties of the flow fields being investigated. 
It may be noted parenthetically that these are not necessary restrictions, and that 
the POD can be applied under more general conditions as well (see Lumley 1970). 
As we will confine ourselves to finite regions in space, all the functions appearing in 
the formulae below can be viewed as being of finite support and hence, on physical 
grounds, being square integrable. Thus, the integrals used below are defined in the 
ordinary Riemannian sense, the integration domain D being a finite region in space. 
Therefore, the flow fields we are investigating belong to the Hilbert space of real, 
square-integrable functions, where a scalar product can be defined by 

(3-1) 

and a suitable norm is 

llall = ( a d .  

In our evaluation of averages we make use of the ergodic hypothesis by substituting 
time averages for the ensemble averages denoted by (.), which is clearly justified for 
the almost time-periodic processes being considered. These time averages are ordinary 
arithmetic mean values for realizations d ( x )  = u(x, t l )  that are equally spaced in time. 

Now, a characteristic structure a(x) may be defined by the property that its flow 
field is, in some average sense, as similar as possible to the flow realizations d ( x )  of 
the velocity fields of the given ensemble. This can be expressed mathematically as 

which means that we specify the structure a by requiring that its projection on the flow 
realizations shall be maximum in quadratic mean. Using the calculus of variations, 
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the problem can be reduced to the Fredholm integral equation 
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R(x,x’) a(x’) dx‘ = l a ( x )  (3.4) 

representing an eigenvalue problem for the structure a (see Lumley 1970 for details 
of the derivation). The kernel R of this equation is the autocorrelation function 

“7 x’) = (u(x)u(x’)) ,  (3.5) 

where the term inside the brackets denotes a dyadic product. Because this kernel has 
the form of a symmetric, non-negative definite Hilbert-Schmidt operator, there exists 
a denumerable infinite set of real solutions aj and corresponding eigenvalues / z j .  

For the case of three-dimensional flow fields d, the eigenvalue problem (3.4) soon 
becomes intractable even at only moderate spatial resolution. It is therefore beneficial 
to transform (3.4) by expressing a as a linear combination of the instantaneous flow 
fields 

M 

e= 1 

where M is the number of realizations given. By introducing this ansatz together with 
the expression for the autocorrelation tensor, 

. M  
1 

R(x,x’) = - c Up(x)uL(x’), 
e= i M (3.7) 

into (3.4), we get the algebraic eigenvalue problem 

where 

In this representation, the order of the eigenvalue problem only depends on the 
number, M ,  of realizations given and is unaffected by spatial resolution. Therefore 
this method, referred to by Sirovich (1987) as the method of strobes, is used to calculate 
the eigenfunctions. 

Before proceeding with the properties of the solutions of (3.4) (or (3.8)) some 
remarks on the problem of homogeneous directions are in order. Within our context, 
by the concept of ‘homogeneous direction’ we denote a coordinate, say z ,  where the 
correlation function becomes translationally invariant so that it can be written 

R(x,  x’, y, y’, Z, 2’) = R(x, x’, y, y’, z - z’). (3.10) 

It can then be shown that the eigenfunctions a can be expressed as 

(3.11) i2nkzlL a(.) =cp(x,y;k)e , k=0,1,2,  ..., 

where it was additionally assumed that the flow fields are not only homogeneous, 
but also periodic in the z-direction with a periodicity length of L, an assumption 
that is frequently made in numerical simulations. If periodicity is dropped, the 
spectrum of the eigenvalues of (3.4) becomes continuous and the proper orthogonal 
decomposition degenerates to a Fourier transform in the homogeneous direction. 
Now, the problem with the eigenfunctions in (3.11) is that they are products of some 
function in x and y and a simple sinusoid in the z-direction. Such a form of a 
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‘coherent structure’ contradicts intuition as well as experimental observations, where 
coherent structures are found to be compact in space, while a sinusoid is certainly 
not a compact function. This situation lead some researchers to believe that the POD 
would not be able to extract the coherent structures of flows possessing homogeneous 
directions. Additional techniques, like ‘shot-noise decomposition’ (Lumley 1970; Moin 
& Moser 1989) have sometimes been used to overcome this problem and to assemble 
a coherent structure (or a ‘characteristic eddy’ in the case of Moin & Moser 1989) 
that is compact in the homogeneous direction as well. Such procedures, however, are 
questionable because they reintroduce - although on a more subtle level - the need 
to predict properties of the coherent structure before it is actually known. 

The reason we did not have to deal with this kind of problem is due to the 
symmetry of the flow fields calculated in the numerical simulation from which we 
took our data. Because our flow fields are symmetric with respect to the (x,y)-plane, 
the functions we are investigating are not homogeneous in the spanwise direction 
and the homogeneous translation group does not apply. Imaginatively speaking, 
this means that we have set up our flow in such a way that the coherent structures 
align along the x-axis rather than occurring at arbitrary positions in the spanwise 
direction. Therefore the eigenfunctions of the POD cannot be factorized as in (3.11) 
and, instead, truly reproduce the coherent structures of our flow, as will be shown in 
the next section. Before turning to the results, we will restate some of the properties 
of the Karhunen-Lobe eigenfunctions of the POD. 

(a) The different eigenfunctions are orthogonal and can be normalized arbitrarily. 
We chose to normalize the coherent structures according to 

The justification for this choice is discussed below in connection with equation (3.15). 
(b) The set of the eigenfunctions n, is complete in the sense that the flow fields of 

the ensemble given can be expanded in the eigenfunctions via 

where 

(3.13) 

(3.14) 

We note that, instead of using (3.14), the expansion coefficients r;i could also be 
calculated directly from an eigenvalue problem that is completely analogous to (3.4). 
This eigenvalue problem can be obtained by exchanging time and space in (3.4) 
and (3.5) (Sirovich 1987, see also Aubry, Guyonnet & Lima 1991, where the resulting 
temporal eigenfunctions - the expansion coefficients cj(t) in our terminology - are 
called chronoi and our spatial eigenfunctions aj(x) are termed topoi). 

(c)  The expansion coefficients are uncorrelated in time, and, with the normaliza- 
tion (3.12), we have 

(3.15) 

Thus, the eigenfunctions a j ,  after being normalized according to (3.12), represent 
the root-mean-square values of the flow fields that are induced by the corresponding 
structure. 
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(d)  We define the energy of a flow field as 

e = u*(x)  dx. (3.16) 

Introducing (3.13) into (3.16), we find, for the time average of the energy, 

(3.17) 

The eigenvalues of (3.4) are therefore all non-negative, and they represent the mean 
value of the energy that the corresponding coherent structure contributes to the flow. 
In that sense the eigenvalues L j  are a measure of the related structure’s importance 
to the flow. In $ 5 ,  however, we will discuss a certain pair of eigenfunctions that, 
despite its low eigenvalues and corresponding low average energy, strongly influences 
the dynamics of the flow. 

By comparing (3.13) and (3.3), one of the most significant properties of the system 
of Karhunen-LoZve eigenfunctions can be seen immediately. It becomes obvious 
that the eigenfunctions have been defined in such a way that the convergence of a 
representation of the flow field is optimally fast in the mean square. This means that 
of all possible systems of eigenfunctions, the one described by (3.3) needs the smallest 
number of terms to represent the flow fields to a given accuracy. This property is 
clearly attractive if one is interested in a low-dimensional description of a turbulent 
flow via a system of ordinary differential equations. Once one has decided that time 
should be the independent variable of this system of ODE’S, which - although not 
being mandatory - seems to be a natural choice, the POD delivers an optimum 
system of eigenfunctions for such a description. Finally, we point out that, as the 
coherent structures can be represented as linear combinations of the given flow fields, 
these eigenfunctions inherit all those properties of the instantaneous flow fields that 
can be expressed in the form of linear homogeneous equations. 

4. Coherent structures of transition: phenomenology 
We start by looking at some of the special properties of the POD eigenfunctions 

representing the coherent structures in the case of transition in an incompressible, 
spatially evolving boundary layer. Because the eigenfunctions are linear combinations 
of instantaneous flow fields, as was mentioned above, it can be concluded that each 
of the eigenfunctions forms a solenoidal vector field representing a kinematically 
possible velocity field of an incompressible flow. Furthermore, each of the boundary 
conditions of the flow as a whole is satisfied by any eigenfunction individually. Thus, 
for example, the no-slip condition at the wall is met by each eigenfunction. 

Now, if one intends to find the coherent structures of a spatially evolving flow, a 
fundamental problem arises at first sight. This is due to the fact that, if coherent 
structures exist in such a flow, one has to expect that they are not only carried 
downstream but that, in general, they will be deformed as they propagate. The 
eigenfunctions of the POD, on the other hand, represent flow fields with stationary 
streamlines, so the question arises as to how these eigenfunctions could capture the 
situation in a spatially evolving flow. 

To answer this question, the eigenvalues of decompositions of the flow fields in the 
regions D1, D2, and D3 (described in table 2) are shown in table 1. As mentioned 
above, these eigenvalues represent two times the average energy that the corresponding 
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i D1 D2 

1 9.80 x 10-4 9.54 x 10-4 
2 1.15 x 10-7 4.08 x 10-7 
3 1.12 x 10-7 3.93 x 10-7 
4 5.28 x 4.50 x 
5 5.21 x 4.40 x 
6 1.90 x 8.16 x lop9 
7 1.89 x lo-’ 7.96 x lo-’ 
8 1.03 x 10-9 4.37 x 10-9 
9 1.03 x 10-9 4.17 x 10-9 

‘y;=2aj 2.38 x 1 0 - ~  9.29 x 1 0 - ~  

0 3  

9.31 x 10-4 
7.63 x 10-7 
7.40 x 10-7 
1.48 x 10-7 
1.43 x 10-7 
7.04 x 10-8 
6.81 x lo-’ 
6.60 x lo-* 
6.49 x 
2.83 . lop6 

TABLE 1. Eigenvalues of POD for regions D1, D2, and D3. 

eigenfunction contributes to the flow. The noise floor of the numerical simulation 
that produced our data is of the order of 10-7-10-6. Therefore, we can expect our 
POD eigenfunctions to represent structures of the flow (as opposed to structures of 
the numerical noise) up to a range of eigenvalues of at least 12 orders of magnitude. 
All the structures being discussed in this paper are well above this limit. 

The first eigenfunction of the POD, corresponding to the first eigenvalue in table 1, 
is almost identical with the mean flow ii = (u). For instance, plots of y-profiles of the 
u-velocity components corresponding to ii and ul are virtually indistinguishable. This 
eigenfunction therefore should not be referred to as a coherent structure in the usual 
sense. The second and higher eigenvalues, however, belong to the actual coherent 
structures of the flow. What is notable about these eigenvalues is that they occur in 
pairs of almost equal value, whereas there is a large gap in magnitude between them. 
This pattern is identical to the one that Rajaee, Karlsson & Sirovich (1992) found in 
their work. The reason for this behaviour can be understood when we look at figure 2, 
where contour lines of the u-velocity component of the first pair of eigenfunctions, 
6 2  and 6 3 ,  and the time behaviour of the corresponding expansion coefficients are 
shown. It can be seen that, essentially, the eigenfunctions of this pair are representing 
the same structure, one of them just being shifted with respect to the other in the 
streamwise direction. Figure 2 (c) shows that the corresponding expansion coefficients, 
1 2  and 1 3 ,  are analogously phase-shifted in time. Thus, if we multiply each of the 
eigenfunctions of such a pair by its corresponding expansion coefficient, we get a 
structure that is moving in the streamwise direction. Most of the structures we found 
propagate at a velocity between 40% and 50% of the free-stream velocity. Within 
our regions D1 and D2 this velocity is approximately (within 10% accuracy) equal to 
the mean-flow velocity at the level in y where the highest Reynolds stress occurs. This 
result is in agreement with findings of Sirovich et al. (1990, 1991). We can therefore 
conclude that the dynamical coherent structures, s j(x, t), of our spatially evolving 
flow are represented by pairs of eigenfunctions according to 

(4.1) S j ( x ,  t) = 52j(t)a2j(x) + l 2 j + l ( t ) a 2 j + 1 ( ~ ) .  

In this paper we will refer to sj as representing the ‘coherent structure of order j’ 
(or ‘jth-order coherent structure’). The eigenfunction ul represents the ‘coherent 
structure of order 0’. A pair of eigenfunctions, uzj and ~2j+l,  not only contains 
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D1 D2 D3 

304)mm<x<369mm 369mmGxG438mm 431mm<x<500mm 
182000 < Re, < 224000 224000 < Re, < 265000 261000 < Re, < 303000 

284 < Reh2 < 316 316 < ReS2 < 430 408 < Resz < 575 

0.00 mm < y < 8.77 mm 

-12.25 mm < z < 12.25 mm 

TABLE 2. Basic parameters of investigated regions. Res, denotes the Reynolds number formed with 
the momentum thickness 62, Re, is the Reynolds number based on the x-position. 

y,,, = 3.16 y,,, = 2.86 y,, = 2.2s 

complete information on the typical shape of the corresponding coherent structure, 
but also shows the evolution that the coherent structure undergoes while moving 
downstream. Also, it is clear from (4.1) that each of the eigenfunctions of a pair 
represents the coherent structure at a certain instant in time, namely the one when the 
expansion coefficient of the other eigenfunction vanishes. We would like to point out 
that the representation (4.1) of the dynamical coherent structures of our flow forms 
the basis for a discussion of the dynamical behaviour and the evolution of coherent 
structures. 

In (Aubry, Guyonnet & Lima 1992) it is shown that the near-degeneracy of the 
eigenvalue problem (3.4) is a consequence of the spatio-temporal symmetries being 
connected with the presence of travelling waves (or structures) in our flow. We 
note that the eigenvalues corresponding to a pair of eigenfunctions are not exactly 
the same, as a consequence of the spatial evolution of the boundary layer and, 
accordingly, of the changes that the structures undergo. For the case of a parallel 
flow where structures of constant shape are travelling downstream at constant speed, 
the problem (3.4) would be degenerate, yielding pairs of identical eigenvalues. 

We will now illustrate the evolution of coherent structures during transition by 
first presenting only the most energetic structure represented by the first pair of 
eigenfunctions. In figures 4-6, we show these structures in three consecutive down- 
stream regions of the boundary layer. The basic parameters for these regions are 
summarized in table 2. The length of the regions corresponds to approximately two 
Tollmien-Schlichting wavelengths, and it was chosen such that two specimens of each 
structure can be observed in each of the figures. The structures are represented by 
isosurfaces of the u- and v-velocity components of the gl. The corresponding eigen- 
functions have been determined by applying the POD separately to the regions D1, 
D2, and D1. As the structures move to the right (downstream) with the flow (note that 
this flow is, to a good approximation at least, time-periodic), the second (downstream) 
structure can be regarded as a later stage in the evolution of a coherent structure 
that before had the shape of the one to the left. Each of the structures is shown 
at the instant in time when the shape of both specimens can be discerned most 
clearly. For example, from figure 4, where the first-order structures of region D1 are 
shown, we can observe how the isosurface of the u-velocity component resembling a 
flat tube develops a delta-shaped ledge at its upper side (figure 4a). The u-velocity 
isosurface (figure 4b) resembles a tube that is being bent along the spanwise axis. 
The corresponding structures for the next downstream region are shown in figure 5. 
It can be observed how the surface of the u-velocity component, which on the left has 
assumed an arrowhead-like form, evolves into the shape of the well-known A-vortex 
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0 80 160 240 320 400 

FIGURE 2. Contour lines of u-velocity component of the pair of eigenfunctions 0213 between 
x = 369 mm and x = 438 mm (region 02) in the plane z = 0 (peak plane) and time behaviour of the 
corresponding expansion coefficients. 

(figure 54. The former tube-like structure of the u-velocity surface (figure 4b) has 
already split up into two parts. Finally, in figure 6, which shows the evolution in 
region D3,  the former A-vortex is being highly stretched in the streamwise direction 
and the u-velocity surface and that of the u-velocity component develop into much 
more complex shapes. 

Figures 4-6 also show an increasing degree of ‘three-dimensionality’ of the struc- 
tures. This evolution can be quantified by computing the energies of the different 
spanwise harmonics for the velocity fields ql. Such a calculation shows that for 
the first-order structure in our region D1 (this structure approximately represents a 
two-dimensional Tollmien-Schlichting wave, see below), about 94% of the energy of 
this structure is contained in the two-dimensional component (the zeroth spanwise 
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FIGURE 3. Contour surfaces of coherent structure of first order in region D,, 12; s 0.95, 
t / A t  = 170 (300mrn < x < 369mm). 

harmonic). In region D2, however, this proportion has dropped to about 30%, and in 
region 03 only 14.5% of the energy is contained in the two-dimensional component. 

The rising spatial complexity of the flow field can also be inferred from the decrease 
of the contribution A: of the first-order structure to the energy of the fluctuating 
flow. This contribution can be calculated from 

This contribution decreases from 95% in the first region, to 86% in the second, to 
53% in the last region investigated. The decline of these relative energies is because 
additional coherent structures, generated as the structures move downstream, take 
their share from the total energy available. As a consequence, from the POD point 
of view, more and more eigenfunctions are needed to adequately represent the spatial 
complexity of the different flow fields that are found in the given ensemble. 

In figure 6, the u-velocity surface of the coherent structure from figure 5 is compared 
to a photograph of a visualization of the A-vortex using time lines (Hama & Nutant 
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FIGURE 4. Contour surfaces of coherent structure of first order in region D2, A; = 0.86, 
t / A t  = 350 (369 mm < x < 438 mm). 

1963). Although the isosurface for the u-velocity of the coherent structure shown is 
not directly comparable to the time lines of the experiment, figure 6 still demonstrates 
a good qualitative similarity between the corresponding flow fields. Thus, we can 
give an affirmative answer to the question raised in the beginning, namely, is POD 
suited for the identification of coherent structures. What we have found is that POD 
is capable of identifying coherent structures that are similar to those found in an 
intuitive fashion. 

Based on the plots shown in figure 7, we can also comment on connections 
between the Karhunen-Loeve eigenfunctions of the POD and the Orr-Sommerfeld 
eigenfunctions of linear stability theory. In figure 7, u-velocity profiles of two- 
dimensional Tollmien-Schlichting waves (i. e. linear waves that are travelling in the 
streamwise direction) are compared to the corresponding rms-values of the two- 
dimensional u-velocity component (zeroth spanwise harmonic) being induced by the 
first order structure sl. Both profiles have been normalized such that the maximum 
amplitude is equal to one. Figure 7 shows that at the very beginning of our 
domain (x = 300mm), the two profiles are indeed almost identical. As the flow at 
that position is close to a linear superposition of a steady, two-dimensional Blasius 
boundary layer and a low-amplitude Tollmien-Schlichting wave, this result could be 
expected intuitively. In fact, it has been shown by Breuer & Sirovich (1991) that the 
Karhunen-Lokve analysis, when applied to the linearized problem, exactly reproduces 
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FIGURE 5. Contour surfaces of coherent structure of first order in region D3, A; w 0.53, t / A t  = 300 
(431 mm < x < 500mm). 

FIGURE 6. Comparison of coherent structure of first order in 02 to experimental visualization of 
A-vortex. 
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FIGURE 7. Comparison of u-velocity profiles of Karhunen-Lokve eigenfunctions and Orr- 
Sommerfeld eigenfunctions. , 0s eigenfunction; , rms-profile of coherent 
structure sl. 

the eigenfunctions of linear theory. From figures 7 (b) and 7(c) it can be seen, however, 
that, at positions further downstream, the corresponding eigenfunctions deviate more 
and more from each other. Within our region D3, the profiles of Orr-Sommerfeld 
eigenfunctions and Karhunen-Loive eigenfunctions are quite different, so that the 
structures described by the POD in the downstream part of our domain have to be 
considered truly nonlinear structures. 

Having thus gained some confidence in the physical significance of the coherent 
structures as identified by POD, we now look at the structure of the flow within a 
selected region in more detail. 

5. The coherent structures of the spike stages 
The higher-order structures in region 02 are now examined. This region is especially 

interesting not only because the A-vortex is most pronounced here (see figure 4), but 
also because the spike stages of transition occur within this region. These stages 
are named for the characteristic negative spikes in the time signals of the fluctuating 
u-velocity component u' (Klebanoff, Tidstrom & Sargent 1962). Time signals typical 
for this stage are shown in figure 8 as obtained from the simulation by Rist et al. 
(1994). It should be noted that the occurrence of these spikes in the time traces 
of the u'-signal is highly localized and occurs in a relatively small region in the 
cross-stream (y, z-plane). Attempts were made by some to explain these spike signals 
as a consequence of a secondary instability of the instantaneous velocity profiles 
(Landahl 1972; Nishioka, Asai & Iida 1980), while others conjecture that the spikes 
result from the linear superposition of a system of waves that are synchronized in 
phase (Kachanov et a1. 1985; f i s t  1990). Based on our coherent structures point of 
view and using POD analysis, we will therefore attempt a closer look at the description 
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FIGURE 8. Signals of u'-component during the spike stages (y = 3.11 mm, z = 0). 
, one-spike-stage, x = 430mm; - - - , two-spike-stage, x = 440mm; 

. . . . . . . . . . . . . . .  , three-spike-stage, x = 450 mm. 

of the events occurring at the spike stages. That is, we would like to understand how 
the events of the spike stages can be depicted in terms of the behaviour of coherent 
structures. 

The u- and u-isosurfaces of the coherent structures of second, third, and fourth 
order, together with the behaviour in time of the corresponding expansion coeffi- 
cients C j ,  are shown in figures 9-11. The relative energies A; of each of the structures 
are noted. The first-order structure is shown in figure 5,  and the time behaviour of 
its expansion coefficients appears in figure 2. 

The u-velocity surface of the second-order structure (figure 9), contributing A; = 
9.6% to the energy of the fluctuating flow, is qualitatively similar to that of the first- 
order structure. It displays the same A-shape as the latter; however, the streamwise 
distance between consecutive structures, as well as the extension of the structure in 
the x-direction, is reduced by a factor of two. The v-velocity surface, however, is 
quite different from that of the first-order structure. It shows an evolution from 
a small arch to a pronounced horseshoe-like shape. For the third-order structure 
(figure 10, A: = 1.7%), the u-velocity surface and the u-isosurface are again similar 
to the corresponding shapes of the second-order structure, with the streamwise scales 
reduced by a factor of three in comparison to the first-order structure. From the 
behaviour of the expansion coefficients of the first three structures, it can be inferred 
that the energy of these structures, 

is almost constant in time. Furthermore, by comparing the frequencies of the 
expansion coefficients and the streamwise 'wavelengths' of the first three structures, it 
can be seen that these structures are all travelling at the same speed in the streamwise 
direction. We also note that the increase in frequency of the higher-order expansion 
coefficients as 1 : 2 : 3 is the same as the one that was found in work by Rajaee & 
Karlsson (1990). 

In contrast, the fourth-order structure, which contributes only 0.9% to the energy 
of the fluctuating flow, behaves completely differently. First of all, it can be seen 
especially well from the u-velocity surface that this structure is located almost entirely 
near the downstream end of the domain considered. It appears as if this structure 
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FIGURE 9. Isosurfaces and time behaviour of second-order coherent structure in D2,  A; NN 0.096, 

t / A t  = 1 (369 mm < x < 438 mm). 
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FIGURE 10. Isosurfaces and time behaviour of third-order coherent structure in D2, A: = 0.017, 
t / A t  = 1 (369 mm < x < 438 mm). 
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were still in the process of formation, and the shape of the isosurfaces of this structure 
is completely different from the ones of the lower-order structures. Furthermore, if 
we look at the behaviour of the expansion coefficients, it can be seen that the energy 
of this structure shows a steep increase at about t/At = 160 and falls back shortly 
afterwards. The energy increases by a factor of more than ten during this event. 
Thus, despite the low average contribution of the fourth-order structure to the energy 
of the flow, the influence of this structure is felt distinctly during the phase of high 
energy. This will become even more obvious when we look at the induced disturbance 
velocities (see below). The striking behaviour of the coefficients 58 and 1 9  shows 
obvious parallels to the spike signals of the u-velocity component, and indeed in the 
numerical simulation the spike stages of transition do occur within the last quarter 
of region D2, which is where the fourth-order structure from figure 11 forms. We will 
therefore examine this structure in some more detail. 

The contour surfaces of the v-velocity component of this structure are shown in 
figure 12 at four different instants in time during the phase of strongly increased 
energy. It can be seen how a structure that was initially tilted in the upstream 
direction is becoming more upright while it is growing in the wall-normal direction. 
At the last instance shown, the big ‘blob’ at the top of the structure appears to 
separate from the main structure. To show that this structure is actually connected 
to the spike signals, the u-velocity distribution of this structure is plotted in figure 13 
at the moment of maximum energy in the cross-stream plane, x = 435mm, that was 
indicated in figure 12. This distribution shows a negative peak just in the region 
where the spike signals are most pronounced. In order to assess the contribution of 
this structure to the spike of the u’-signal, the u’-signals that are induced by different 
coherent structures are plotted in figure 14 at a point of the cross-stream plane at 
x = 435 mm where the spike signals reach the maximum amplitude. The point chosen 
coincides with the one where the u-velocity distribution from figure 13 reaches its 
minimum. There it can be seen that, of all structures, the fourth one induces the 
largest negative u’-signal. While the passage of the first-order structure (the A-vortex) 
just leads to a smooth harmonic oscillation of u’, the action of the fourth-order 
structure actually generates the characteristic spikes. 

Some more information on the properties of the fourth-order structure can be 
obtained by looking at the velocity vectors of its flow field within a cross-stream 
plane. In figure 15, the projection of the velocity vectors is plotted on the same 
cross-stream plane where the u-velocity distribution (figure 13) has been shown. It 
can be clearly seen that this structure induces a strong updraft of fluid away from the 
wall at the moment of maximum energy. Shortly afterwards, the structure generates 
a movement of fluid back towards the wall, which then is spreading in the spanwise 
direction in the near-wall region. 

6. Discussion and conclusions 
We will first point out some of the most important elements of the description of the 

flow phenomena at the spike stages that were obtained by investigating the coherent 
structures as identified by POD. We have seen that, indeed, the most energetic of the 
coherent structures of the flow is an object that clearly shows the typical shape of 
the well-known A-vortex. Thus we can say that, in contrast to previously expressed 
doubts (Sirovich 1989), the eigenfunctions of the POD are definitely capable of 
describing the spatially evolving structures in our case of a transitional flat-plate 
boundary layer. On the other hand, it should be noted that one major requirement to 
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FIGURE 11. Isosurfaces and time behaviour of fourth-order coherent structure in D2, A; 52: 0.009, 
t / A t  = 1 (369mm < x < 438 mm). 
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FIGURE 12. Isosurfaces u = 0.05 m/s of fourth-order coherent structure in Dz during a spike. 

reach this result was the availability of ‘clean’ numerically calculated flow fields that 
were symmetric along a coordinate that otherwise would have been a homogeneous 
direction. This symmetry of the flow fields leads to the coherent structures being 
aligned along the x-axis. 

The structures determined by the POD method are similar to the ones that were 
found in experiments. Therefore, the decomposition of the flow into Karhunen-LoZve 
eigenfunctions, defined by purely mathematical reasoning, organizes the phenomena 
occurring in the transitional boundary layer in a manner that is intuitively satisfying 
and seems to correspond to a decomposition a human observer could perform 
instinctively. 
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FIGURE 13. Distribution of u-component of fourth-order coherent structure within cross-stream 
plane x = 435 mm at t / A t  = 180. 

4 4  , 1 
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FIGURE 14. Superposition of signals of u’-component of coherent structures at  x = 435mm, 
y = 3.11mm, z = 0. , first-order structure; - - -, up to second-order structure; 

fifth-order structure; 
_ _ _ _ _ _  , up to third-order structure; - - , up to fourth-order structure; - - - -,  up to 

, up to sixth-order structure. 

Our investigations of the events occurring at the spike stages have shown that 
the eigenfunctions of the POD offer the possibility of a compact description of 
complex flow phenomena. The functions s j  that describe the velocity fields of 
the coherent structures not only give us ‘typical’ velocity distributions of coherent 
structures, but they contain complete information on the evolution of the structures. 
Thus, investigations of the s j  are apt in addressing the criticism by Wallace & 
Hussain (1990) on current studies of coherent structures: ‘ I t  is not enough to know the 
most probable distributions of vorticity or velocity Jluctuations. It  is necessary to know 
how the patterns will euolve’ (p.S208, emphasis is ours). In particular, we have seen 
that the characteristic events of the spike stages can essentially be understood from 
the behaviour of one single coherent structure. This statement can be made although 
the action of the fourth-order structure alone does not allow a complete description 
of the phenomena characteristic of the spike stages. As in the case of the A-vortex, 
where two additional structures - the second and the third ones - described some 
finer details of a common pattern (‘A-shape’), higher-order structures existed in the 
case of the ‘spike-structure’ that were not shown here. These add more details to the 
description of the spike events. However, owing to the fast convergence of the POD, 
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FIGURE 15. Velocity vectors of fourth-order coherent structure at cross-stream plane x = 435 mm. 

these higher-order structures induce considerably smaller velocity fluctuations than 
the fourth-order structure (see figures 14 and 15). 

We would also like to draw attention to the striking similarity of the phenomena 
occurring at the spike stages of a transitional boundary layer to the bursting event 
of fully turbulent boundary layers (Robinson 1991). The updraft of fluid shown in 
figure 15 (a) corresponds to the ejection phase of this bursting event and the movement 
of fluid shown in figure 15 (b) resembles the sweep phase of bursting. The detailed 
analogies between bursting and the phenomena of the spike stages as described here 
suggest corresponding similarities in the underlying mechanisms. Such analogies 
between transitional and fully turbulent boundary layers have been suggested before 
(for example by Blackwelder 1991). If they were real, our investigations could also 
shed some light on the bursting phenomenon of turbulent boundary layers. For 
instance, our results concerning the phenomena of the spike stages show that the 
'ejection' of fluid during a spike cannot be interpreted as just an epiphenomenon of 
the passage of a A-vortex. Rather, this ejection of fluid, although probably being 
triggered by the passage of the A-vortex, seems to be an event sui generis. If this result 
can be extended to the bursting of turbulent boundary layers, models of bursting that 
describe this phenomenon as a simple side effect of the movement of a vortex (see 
Robinson 1991) would not be sufficient. 

Finally, we note that, although the investigations reported here yielded additional 
insight into the phenomena occurring at the spike stages of transition, these were 
mainly on a phenomenological level describing basically the kinematics of coherent 
structures. Such explorations are not sufficient to clarify the causal interrelations of 
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the different phenomena. Referring back to the quotation of Wallace & Hussain 
above, we do not only want to know how the patterns evolve, we also want to know 
why they behave as they do. For instance, in the case of the fourth-order structure 
described above, the question arises as to how the extremely strong variations of 
the energy of this structure are created. We have therefore derived the detailed 
dynamical equations for the energy of the coherent structures. By looking at the 
energy flows within the system of coherent structures, we were able to reveal some of 
the mechanisms behind the behaviour of the coherent structures. The results of these 
investigations will be reported in a subsequent paper (Rempfer & Fasel 1994). 

This research was supported by grants from the Studienstiftung des deutschen 
Volkes, Germany, and by the Office of Naval Research, USA. 
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